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Abstract

A method based on a single test is proposed to characterize the elasticity of an isotropic homogeneous
material in the shape of a cylinder of any slenderness (length–diameter) ratio. Firstly, the Rayleigh–Ritz
method is used to determine the natural frequencies of the cylinders vibrating axisymmetrically. The study
is focused on cylindrical samples with diameter and length of similar magnitude so that the shear modulus
and the Poisson ratio can be calculated simultaneously. Subsequently, the theoretical results for cylinders of
slenderness ratio between 0.1 and 3 are analyzed in order to obtain the data required to determine the
elastic constants from one of the two lowest measured natural frequencies and their quotient. The analysis
of the results demonstrates that any slenderness ratio is useful in the calculation of the elastic constants,
although in some cases the third natural frequency should be used. Furthermore, the influence of the
length–diameter quotient on the sensitivity of the method is analyzed by evaluating the systematic
uncertainties for both dynamic elastic constants. Finally, the method is experimentally tested by
characterizing two steel cylinders with slenderness ratios 0.1 and 1, respectively. The results demonstrate
that uncertainties for both Poisson ratio and the shear modulus are smaller when the slenderness ratio is 1.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

The value of the two elastic constants of isotropic materials can be determined by static and
dynamic measurements. Dynamic methods based on elastic wave measurements have been
increasingly used to determine accurately the ‘‘adiabatic’’ elastic constants. Traditional resonance
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methods make use of two experiments on a bar: in one of them a torsional vibration is excited and
in the other either longitudinal or flexural vibration is induced.

One method, simpler than others from a theoretical point of view, is based on the study of the
vibrations of a system free of external disturbances during the time the system remains under
study. This has an advantage since there are no exciting forces and the mathematical equations
involved are therefore simpler.

A very simple sample is a cylinder of length L and diameter D. It is simple due to its
manufacture, its manipulation and the implied mathematical calculation. Let n and G be its
Poisson ratio and shear modulus, respectively.

The elementary theory of vibration of free bars assumes that the length of a bar is much greater
than its diameter. Hence, the longitudinal natural frequency fN, density r and Young’s modulus
E=2(1+n)G are related by the formula fN=N(E/r)1/2/(2L), where N is an integer. The natural
frequency is said to correspond to a symmetric mode if N is odd and to an antisymmetric mode if
N is even. Such natural frequencies depend on only one elastic property, Young’s modulus.
Therefore, the measurement of fN permits the calculation of E, but not of both elastic constants.
In cylinders whose lengths are of the same order of magnitude as their diameters, a contraction or
an extension causes non-negligible radial displacements, which depend on n: Therefore, natural
frequencies will depend on the two elastic constants of the material, on two geometrical
characteristics of the test piece such as L and D, and on the density of the cylinder.

It is necessary to apply the equations of elasticity and the boundary conditions to obtain exact
natural frequencies. For a finite cylinder it is impossible to obtain analytical solutions to the
equations of motion which satisfy the boundary conditions. Thus, approximate solutions are
sought. One of the most widely used procedures for finding such solutions is the Rayleigh–Ritz
method. Although this method is applicable to all continuous systems, expressions satisfying all
boundary conditions of a problem are difficult to find except for simple geometrical shapes.
Fortunately, a cylinder is a simple shape when cylindrical co-ordinates are used. There is much
research which applies this technique to the study of vibrations of cylinders. The displacement
functions traditionally used are trigonometric or Bessel functions in certain cases [1,2] and power
series in others [3,4]. In this paper, power series are selected. As usual, for simplicity of
formulation, the non-dimensional frequency O=pfD(r/G)1/2 is used, where f is the ordinary
frequency measured in Hz.

The finite element method is based on the same variational principles. Among other papers
applying this method to vibration analysis, the paper presented by Larsson [5] is representative;
the purpose of his work is to investigate numerically and experimentally the in-plane modes of a
free isotropic rectangular plate. Finite element simulations have also been used [6] to verify the
accuracy of a direct method of determining the flexural stiffness of vibrating anisotropic plates.

The interest in using variational principles to derive the eigenvalue equation is due to the
connection between natural frequencies and elastic constants. The Rayleigh–Ritz method was
used in pioneering work [7] to calculate resonance frequencies, and the results obtained were used
to determine the elastic constants by means of the well-known cube-resonance method. Other
authors [8,9] have refined this methodology and applied the rectangular parallelepiped resonance
method to the elastic characterization of crystals. Resonant ultrasound techniques have also been
used to determine the elastic constants of cylinders [10] and parallelepiped-shaped composites [11].
In all these cases, approximate techniques are first used to solve the equations, then experimental
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measurements of the natural frequencies are carried out. Calculation of elastic constants is based
on the determination of the differences between theoretical and experimental resonance
frequencies; a function of such differences is minimized to yield optimal estimates for elastic
constants.

The objective of this paper is to provide a method to determine the elastic constants of isotropic
materials. The methodology is based on obtaining the spectrum of free vibration of a cylindrical
sample which has been set in vibration by an axially applied impact. The lowest axisymmetric
natural frequencies are the input data used to determine both elastic constants. The Rayleigh–Ritz
method is used to find a numerical solution for the free vibration of a finite cylinder. However,
this work differs from those cases referred to above in both the theoretical and experimental
procedures which determine the elastic constants. In the aforementioned methods, the elastic
constants are computed by minimizing a function which depends on the difference between the
computed and measured natural frequencies. Thus, an iterative process should be followed. On
the other hand, the data provided in this paper enable n and G to be determined directly from the
two lowest measured natural frequencies for most of the short cylinders, and therefore no further
calculations are required.

The experimental resonance frequencies in the papers referred to are usually determined using
two piezoelectric transducers: an emitter and a receiver. Forced vibration is induced to find the
response to a harmonic excitation. Thus, a sweeping process is followed to obtain the voltage–
frequency output signal, whose maxima are the resonances. In this work, after a mechanical
impact the sample is left to vibrate on its own and the free vibration is detected using a laser
interferometer with a broadband frequency which permits, in a single test, the determination of
the vibration spectrum. Thus, there is practically no interaction with the vibrating sample.

From the O versus n table provided by Leissa and So [4] for L/D=1, it was observed that the
elastic constants can be determined. Therefore, in a previous article [12], a methodology
was proposed for the calculation of the two elastic constants of an isotropic cylindrical sample of
L/D=1, which consists of a single experiment for measuring the two lowest natural frequencies f1
and f2 from the axisymmetric vibration. The knowledge of the values of O1 and O2 for diverse
values of n permits the calculation of the elastic constants by subsequent trials. More recently [13]
this method has been improved. In this renewed method, it is sufficient to know the quotient f2/f1
to obtain n directly by using a precise numerical table, from which G is obtained independently of
n from quotient f2/f1 and the lowest natural frequency.

This paper improves on the previous paper in as much as it is not limited to the case of L/D=1,
since any slenderness ratio is considered. However, mainly small values of L/D are explored.
Furthermore, the uncertainties of n and G are determined in order to find the most favourable
slenderness ratio.

2. Calculation of non-dimensional frequencies

As indicated, if the quotient L/D is large, the longitudinal natural frequencies of a cylinder
depend on elastic constant E but not on n: Therefore, for any large slenderness ratios the method
proposed for the calculation of both elastic constants by means of a single test is expected to be
inefficient. Therefore vibrations of cylinders whose quotients L/D are small should be studied. The
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study will be focused mainly on the domain 0.1pL/Dp3. Although values of the Poisson ratio in
the interval �1ono0.5 are permissible, most ordinary materials have values in the interval
0ono0.5; here the field of variability is limited from 0 to 0.49999.

The Rayleigh–Ritz method allows values for the free natural frequencies of a cylinder to be
obtained on the basis of permissible displacement functions. When considering only the modes
with axial symmetry or axisymmetric modes, the azimuthal variable y does not appear and, in
addition, the displacements have only two non-zero components, radial u and axial w. Therefore
the torsional axisymmetric vibrations are excluded. The analysis is focused on the free vibrations
of a cylinder, i.e., the bases and the lateral surface are free and there are no bulk forces. By using
non-dimensional co-ordinates: r, the radial co-ordinate divided by cylinder radius; and z, the axial
co–ordinate divided by cylinder length, the assumed displacements in the cylinder are

uðr; y z; tÞ ¼ Uðr; zÞsinðotÞ; ð1Þ

wðr; y z; tÞ ¼ W ðr; zÞsinðotÞ;

where o is the natural angular frequency, o ¼ 2pf ; and t is time. Let the origin of the co-ordinates
and the OZ-axis be the centre of the cylinder and its axis, respectively (see Fig. 1).

Let the displacements be expressed by means of algebraic polynomials. Since all the surfaces of
the cylinder are free, suitable test functions are

Uðr; zÞ ¼
XI

i¼1

XJ

j¼0

Aijr
izi and W ðr; zÞ ¼

XP

p¼0

XQ

q¼0

Cpqrpzq; ð2Þ

where i=0 is left out in order to avoid singularities in the stresses at r=0. If displacements are
symmetric with respect to the central cross-section, the longitudinal displacements are odd
functions of variable z, whereas the displacements in the radial direction are even functions of z.
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These modes of vibration correspond to those called symmetric axisymmetric modes. On the other
hand, when even functions of variable z are used for w, and odd functions of z for u, the solutions
found are designated as antisymmetric axisymmetric modes. In symmetric modes, j takes only
even values and q odd values whereas in antisymmetric modes, j takes odd values and q even.

The expressions of the functionals of maximum potential energy and maximum kinetic energy
in a period of axisymmetric vibration are

Vmax ¼ 2pGL

Z 1=2

�1=2

Z 1

0

n
ð1� 2nÞ
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r dr dz; ð3Þ

Tmax ¼ prLR2o2

Z 1=2

�1=2

Z 1

0

U2 þ W 2
� �

r dr dz:

The minimizing conditions imply that q(Vmax�Tmax)/qAij=0, q(Vmax�Tmax)/qCpq=0, for all
values of i, j, p and q. These conditions constitute a set of linear homogenous algebraic equations
in the unknown quantities Aij and Cpq. The requirement of non-trivial solutions gives the
admissible values for O2. For each eigenvalue O2, the set of linear equations supplies the
eigenvectors, whose components are the unknown quantities Aij and Cpq. Since the best possible
convergence is desirable, as many polynomial terms are included in the calculation as the
computer can deal with. For L/D=0.1, the term type r10 z5 has been achieved and, for L/D=3,
term r5 z9. Hence convergence of the results for the lowest non-dimensional frequencies is
expected; in effect, all the digits of the non-dimensional frequencies shown in the tables remain
unchanged when raising or lowering the degree of the polynomial by one unit.

The results obtained by means of the numerical calculation of the non–dimensional frequency
are complicated since O depends on both n and L/D. The numerical calculation yielded [14] the
five lowest symmetric non-dimensional frequencies Os1, Os2, y, Os5, and the five antisymmetric
ones Oa1, Oa2, y, Oa5, for each value of L/D=0.1, 0.2, y, 3.0 and for at least 11 values of n:
Certain results corresponding to L/D=0.1 are listed in Table 1, whereas Table 2 refers to L/D=1.
The result for L/D=1 may be compared with those obtained by Leissa and So [4, Tables 3 and 4],
although the comparison is only partial since only four significant digits are given in this reference,
whereas six are given here; however, the present results rounded to four digits agree with those
presented by them. Henceforth, let O1 be the lowest value of O independent of symmetry type, O2

the second lowest value, and so on.
The purpose of this work is to use the results of numerical calculations to determine elastic

constants, therefore we have exhaustively analyzed such results in order to provide the data
required to characterize the elasticity of the material. This study appears in the following section.

3. Numerical results. Methodology to determine the elastic constants

Due to the limitation of the bandwidth of the excitation system, the spectrum of the vibration
presents greater amplitude for the lowest natural frequencies, which are expected to be detected
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primarily. Thus, the analysis of the results will be centred on the identification and later use of
these lowest natural frequencies to characterize the elasticity of the material of the cylinder.

For a specific cylinder of a given material, the spectrum of its natural frequencies is obtained
experimentally, and the natural frequencies are denoted in ascending order by f1, f2 and f3.

Proportionality of O and f is the result of the definition of non–dimensional frequency, i.e., the
order of the natural frequencies and that of O are equivalent. Analogously, the quotients are
proportional to the ratio of the natural frequencies, i.e., Oj/Oi=fj/fi for all values of i and j.

In order to apply the method proposed to determine n and G from the two lowest natural
frequencies, it is essential, for the tested cylinder, that n be a single-valued function of the ratio
O2/O1. Higher detected natural frequencies can be used in problematic cases or to verify results.

The calculation of the quotient O2/O1 for each value of n; presented below, has been made for
slenderness ratio values in the interval 0.1pL/Dp3, with increments in L/D of 0.1. The quotient
O2/O1 versus the Poisson ratio n appears in Fig. 2 as curves for the indicated quotients of L/D.
Fig. 2(a) presents these curves for values of the slenderness ratio between 0.1 and 1. High values of
the quotient O2/O1 are observed for the ratio L/D=0.1, which corresponds to a thin circular disc.
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Table 1

Non-dimensional frequencies O ¼ pfD
ffiffiffiffiffiffiffiffiffi
r=G

p
for the two lowest frequency axisymmetric modes of a free cylinder with

L/D=0.1, their ratio and the magnitudes B, H, K and M for the calculation of the systematic uncertainties

n O1 O2 O2/O1 B H K M

0.00 0.64232 2.58745 4.02829 15.2 9.3 30.1 33.5

0.02 0.65309 2.61340 4.00159 15.4 9.5 30.1 33.8

0.04 0.66405 2.63999 3.97559 15.6 9.8 30.0 34.2

0.06 0.67521 2.66724 3.95024 15.7 10.2 30.0 34.4

0.08 0.68660 2.69517 3.92539 16.0 10.6 30.1 34.8

0.10 0.69821 2.72383 3.90116 16.1 10.8 30.0 35.2

0.12 0.71007 2.75325 3.87743 16.2 11.2 30.0 35.5

0.14 0.72220 2.78345 3.85413 16.3 11.4 30.0 35.8

0.16 0.73462 2.81449 3.83122 16.4 11.8 29.9 36.1

0.18 0.74734 2.84640 3.80871 16.5 12.1 29.9 36.4

0.20 0.76039 2.87923 3.78652 16.5 12.4 29.9 36.7

0.22 0.77379 2.91302 3.76461 16.6 12.7 29.9 37.1

0.24 0.78756 2.94783 3.74299 16.6 13.0 29.9 37.3

0.26 0.80173 2.98371 3.72159 16.5 13.2 29.8 37.5

0.28 0.81634 3.02071 3.70031 16.5 13.4 29.8 37.8

0.30 0.83140 3.05891 3.67923 16.4 13.5 29.8 38.0

0.32 0.84697 3.09837 3.65818 16.2 13.8 29.8 38.2

0.34 0.86307 3.13916 3.63720 16.1 13.8 29.7 38.4

0.36 0.87974 3.18137 3.61626 15.9 13.8 29.7 38.5

0.38 0.89704 3.22507 3.59524 15.7 13.9 29.6 38.5

0.40 0.91501 3.27036 3.57412 15.4 13.9 29.6 38.6

0.42 0.93371 3.31735 3.55287 15.1 13.8 29.6 38.6

0.44 0.95320 3.36615 3.53142 14.7 13.6 29.5 38.5

0.46 0.97356 3.41687 3.50967 14.4 13.5 29.5 38.4

0.48 0.99485 3.46966 3.48762 14.7 13.2 29.4 38.2

0.49999 1.01603 3.52185 3.46629 — — — —
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Fig. 2(b) presents such curves for values of the slenderness ratio between 1 and 3. From Fig. 2, it is
deduced that n is a single-valued function of the quotient O2/O1 for slenderness ratios L/D=0.10,
0.14, 0.16, 0.18, 0.2, 1, 1.1, 1.2, 1.3, and for L/DX1.9.

For L/D=0.1, numerical calculations show that Oa1oOa2oOs1 for all values of the Poisson
ratio. In Fig. 2(a), it is observed that n is a single-valued and decreasing function of O2/O1 with a
pronounced slope. Therefore, quotient f2/f1 allows the direct calculation of the Poisson ratio. The
values of O1, O2 and O2/O1 are given in detail in Table 1. The O2/O1 quotient ranges from 4.02829
to 3.46629, where the interval length is 0.56200. Thus, for L/D=0.1, the interval of existence of
O2/O1 is the largest among the cases studied.

For L/D=0.2, the following arrangement for the values of O: Oa1oOs1oOa2oOa3oOs2oOa4

is found. The Poisson ratio is a monotonic increasing function of the quotient O2/O1=Os1/Oa1.
The quotient f3/f1=Oa2/Oa1 also directly gives the value of n; however this is not shown in this
article. Furthermore, the latter quotient presents a more pronounced slope as opposed to the
former, hence a higher sensitivity for the calculation of n is expected in this case.

ARTICLE IN PRESS

Table 2

Non-dimensional frequencies O ¼ pfD
ffiffiffiffiffiffiffiffiffi
r=G

p
for the two lowest frequency axisymmetric modes of a free cylinder with

L/D=1, their ratio and the magnitudes B, H, K and M for the calculation of the systematic uncertainties

n O1 O2 O2/O1 B H K M

0.00 2.22144 2.30623 1.03817 5.7 3.0 12.2 3.1

0.02 2.24160 2.34391 1.04564 4.7 2.5 12.2 1.3

0.04 2.25795 2.38173 1.05482 4.1 2.2 12.1 0.3

0.06 2.27109 2.41967 1.06542 3.7 2.0 12.1 0.4

0.08 2.28162 2.45772 1.07718 3.5 1.9 12.1 0.8

0.10 2.29012 2.49583 1.08982 3.4 1.8 12.0 1.1

0.12 2.29704 2.53399 1.10315 3.4 1.7 12.0 1.4

0.14 2.30274 2.57215 1.11700 3.3 1.7 11.9 1.5

0.16 2.30749 2.61027 1.13122 3.3 1.6 11.9 1.7

0.18 2.31149 2.64831 1.14572 3.3 1.6 11.8 1.8

0.20 2.31489 2.68621 1.16041 3.4 1.6 11.8 1.9

0.22 2.31782 2.72393 1.17521 3.4 1.6 11.8 2.0

0.24 2.32037 2.76141 1.19007 3.5 1.6 11.8 2.0

0.26 2.32259 2.79858 1.20494 3.6 1.6 11.7 2.1

0.28 2.32456 2.83540 1.21976 3.7 1.6 11.7 2.2

0.30 2.32630 2.87178 1.23448 3.8 1.6 11.7 2.2

0.32 2.32786 2.90768 1.24908 3.9 1.6 11.7 2.3

0.34 2.32926 2.94303 1.26350 4.0 1.6 11.7 2.3

0.36 2.33053 2.97777 1.27772 4.2 1.6 11.6 2.4

0.38 2.33168 3.01185 1.29171 4.3 1.7 11.6 2.4

0.40 2.33273 3.04521 1.30543 4.5 1.7 11.6 2.4

0.42 2.33369 3.07780 1.31886 4.7 1.7 11.6 2.5

0.44 2.33457 3.10960 1.33198 4.9 1.8 11.6 2.5

0.46 2.33539 3.14055 1.34476 5.1 1.8 11.6 2.5

0.48 2.33614 3.17064 1.35721 5.3 1.8 11.6 2.6

0.49999 2.33684 3.19984 1.36930 — — — —
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To study the change in sign of the slope from L/D=0.1 to 0.2, intermediate values of the
slenderness ratio were analysed. The results are shown in Fig. 2(a).

The cases of L/D from 1 to 1.3, Fig. 2(b), are very similar. For L/D=1, 1.1, 1.2, O2/O1 is equal
to Oa1/Os1, and for L/D=1.3, O2/O1 is equal to Os2/Os1.
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Fig. 2. The quotient O2/O1, which is f2/f1, versus the Poisson ratio n for cylinders with slenderness ratio L/D: (a) from

0.1 to 1. Note the maxima (M) of the curves for L/D from 0.3 to 0.8 (and 0.12), and the minima (m), which are equal to

the unit, corresponding to the cases in which the first two modes intersect (from 0.7 to 0.9); (b) from 1 to 3. There are

maxima for L/D between 1.4 and 1.8.
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In Fig. 2(b) similar behaviour is observed for all values L/DX1.9. It is found that n is a
monotone decreasing function of quotient O2/O1=Oa1/Os1.

Consequently, the method used in the calculation of the Poisson ratio for cylinders based on the
determination of O2/O1=f2/f1, is directly applicable when this quotient is a single-valued function
of n: In these cases, for a determined ratio L/D, the value of n can be graphically obtained from the
value of O2/O1 (Fig. 2). It will be enough to find the intersection point of the O2/O1 horizontal line
and the L/D curve, whose X co-ordinate is the value of n for the material. If higher precision is
desired, tabulated values should be used (included here only for slenderness ratio 0.1 and 1).

Since n is determined from O2/O1, G is calculated from the same quotient. Tables 1 and 2 give
the values of O1 and O2/O1 for L/D=0.1 and 1, respectively. These tables, and those
corresponding to other slenderness ratios [14], allows one to obtain O1 from quotient O2/O1. In
fact, if properties such as r, D and f1 are measured in the sample, the shear modulus G may be
calculated from the equation O1 ¼ pDf1

ffiffiffiffiffiffiffiffiffi
r=G

p
: Fig. 3 provides graphically estimated values of O1.

Fig. 3(a) represents O2/O1 versus O1 for values of slenderness ratio from 0.1 to 1.0, while Fig. 3(b)
shows such dependency for values of L/D between 1 and 3. It can be observed that O1, and
therefore G, is a single-valued function of O2/O1 for L/D=0.1, 0.14, 0.16, 0.18, 0.2, 1.0, 1.1, 1.2,
1.3 and also for values equal to or greater than 1.9.

In Fig. 3, the curves of L/D=constant are of similar character within these certain ranges of
slenderness ratio L/D. Hence, the method proposed to characterize the elasticity of materials is
directly applicable to certain sets of neighbouring values of L/D, where only the first two natural
frequencies of the spectrum are used.

For L/Db1 the elementary theory for slender bars starts to be applicable. For this theory,
O1=p(1/2+n/2)1/2/(L/D) and O2/O1=2. Therefore curves for higher slenderness ratios tend
towards:

(a) a family of hyperbolae, in diagram O1 versus L/D,
(b) the horizontal straight line O2/O1=2, in Figs. 2(b) and 3(b).

Hence, for large L/D, the proposed method does not provide accurate values of the elastic
constants. Nevertheless the calculation of the Young modulus becomes easier.

For L/D51, rods become plates. The length of the rod may be considered infinitely small with
respect to its diameter. Therefore for very short cylinders, only very high natural frequencies are
expected for symmetric modes. If plates are considered as two-dimensional elastic systems,
antisymmetric modes are expected, where bending moments and transverse shear forces are
active. The governing equation in terms of polar coordinates is given by [15]

Eh2

12ð1� n2Þ
=4w þ r

@2w

@t2
¼

q

h
; ð4Þ

where h is the plate depth, and q the external force per unit area. If there are no surface forces,
q=0, Love [16] argues that the natural frequencies for the normal modes are proportional to the
thickness, and inversely proportional to the square of the linear dimension. For the present disc
faBL/D2, therefore, OaBfDBL/D and Oa versus L/D is a straight line in accordance with our
numerical calculation [14]. For short cylinders, L/D-0, therefore Oa and fa are small. Hence the
lowest natural frequencies appearing in an experimental spectrum correspond to antisymmetric
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modes. Furthermore, only the elastic property E/(1-n2) appears in Eq. (4); therefore, only this
elastic property may be determined by wave experiments with plates. Hence very short cylinders
are not adequate for the calculation of the elastic constants in a single experiment. Since the
present methodology can be applied to cylinders with L/D=0.1, only cylinders whose slenderness
ratio L/D50.1 have such a limitation.

4. Singular slenderness ratios

Except for the slenderness ratios indicated in the previous section, n is not a single-valued
function of O2/O1, and therefore higher natural frequencies should be used. In the interval studied
the singular slenderness ratios are 0.12, from 0.3 to 0.9 and from 1.4 to 1.8. For these values of the
slenderness ratio, a detailed study has been performed, which is described in full by Nieves [14].
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The results provide the lowest natural frequencies to be used in determining n. A summary of such
a study is shown in Fig. 4, where the required information to calculate n from one of the quotients
O2/O1, O3/O1, O3/O2 is given.

From the aforementioned study it is concluded that the method proposed may also be applied
to characterize cylinders with singular slenderness ratios; where the third natural frequency will be
used. In each situation it is necessary to use the applicable quotient. The data of Fig. 4, together
with those of O1 from either Fig. 3 or computed tables lead to the determination of the elastic
constants of the samples.

5. Sensitivity based on the slenderness ratio

The Poisson ratio is a function of O2/O1 and L/D, n=n(O2/O1, L/D). In order to calculate n with
high sensitivity, the partial derivative of n with respect to the quotient O2/O1 should be as small as
possible. However such a derivative depends on n and L/D. Thus, the purpose here is to quantify
the best length/diameter ratio which leads to the highest accuracy of calculation.

Now apply the systematic uncertainty methodology. If a physical magnitude y is a function
y=F({xi}) of a set of physical magnitudes xi which have been measured directly and are affected
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by their respective uncertainties Uxi
; then the uncertainty of an indirect measurement Uy is

estimated by means of the differential of this function using the absolute values of the partial
derivatives [17], that is, Uy=

P
9qF/qxi9 Uxi

: It will be supposed that all the measuring instruments
are well calibrated, therefore their uncertainties Uxi

are only due to their sensitivities. First, this
method will be applied to the Poisson ratio and then to the shear modulus.

Quotient O2/O1 equals the ratio f2/f1 of the frequencies f2 and f1 measured directly with a
Fourier analyser. Therefore, the uncertainty of n is

Un ¼
@n

@ O2=O1

� �
�����

����� Uf2

f1
þ

f2Uf1

f 2
1

� �
þ

@n
@ L=D
� �

�����
����� UL

D
þ

LUD

D2

� �
: ð5Þ

The values f1 and f2 are simultaneously obtained as a result of the FFT analysis when a single
experiment is carried out. Thus, the sampling frequency is, according to the Nyquist criterion, at
least double the highest natural frequency, i.e., f2. Therefore, if the sampling theorem is strictly
applied, it will be Uf1=Uf2=2f2/N, where N is the number of samples which the analogue-to-
digital converter acquires. If the apparatus used to measure L and D is the same, UD=UL. Hence

UnE
2

N

Dn
D O2=O1

� � O2
2

O2
1

þ
O2

O1

 !
þ

Dn
D L=D
� � 1þ

L

D

� �
UL

D
; ð6Þ

where Dn is the difference between two consecutive input data of n used for the calculation of O:
Denote

B �
Dn

D O2=O1

� � O2
2

O2
1

þ
O2

O1

 !
and H �

Dn
D L=D
� � 1þ

L

D

� �
: ð7Þ

The first factor of B may be obtained from the slope of the lines of constant L/D of Fig. 2, and
its second factor, the magnitude in brackets, is given by the corresponding ordinate axis. In the
same way, the magnitude Dn=D L=D

� �
and, consequently, the value of H can be calculated from

the intersection points of the horizontal line for O2/O1 with the L/D curves. Looking at the figures,
lines of constant L/D with high slope and low ratio O2/O1, i.e., those lines placed at the bottom,
have small values of B. Small values of H are given when the slenderness ratios are small and the
lines of L/D=constant are very close. The minimum value of 2B/N+HUL/D will give the best
accuracy for n: This condition seems to be fulfilled for cylinders whose slenderness ratio and
quotient of the two lowest frequencies are small. However, both the slope D(O2/O1)/Dn and the
quotient D(L/D)/Dn should yield high values. Fig. 2(a) shows that the lowest ratio studied, L/
D=0.1, has the highest slope, although for this ratio the quotient of the two lowest frequencies is
high. Furthermore, L/D=1 has the lowest quotient O2/O1 from among the single-valued functions
studied and lines of constant L/D are closer than for L/D=0.1 The value of L/D for which Un is the
minimum appears to be close to one of these two slenderness ratios. Therefore, comparison of Un

for such ratios is carried out.
Table 1 gives the values of B and H for L/D=0.1. If one knew the value of n of the material with

which the cylinder is made, the first term of the systematic uncertainty of n would be obtained
immediately by reading the B value in its row and multiplying it by 2/N. However, n is not known;
indeed, it has to be sought. Hence, care should be taken and the most unfavourable circumstance
should be considered. The maximum value of B which appears in the Table, 16.6, corresponds to
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the most unfavourable case. This value multiplied by 2/N is the maximum of the first term of the
systematic uncertainty of n. The same table shows the magnitude H. The partial derivative
appearing in H has been calculated for each O2/O from both L/D=0.1 and 0.099. This H
multiplied by UL/D leads to a precise estimation of the second term in Un. The maximum value of
H is 13.9.

Table 2 gives the values of B and H for L/D=1. Note that the maximum values for B and H

which appears in this Table are 5.7 and 3.0, respectively.
In relation to the systematic uncertainty of n; the slenderness ratio L/D=1 is more suitable than

L/D=0.1, since its values for B and H are the smallest for all n.
As far as the shear modulus is concerned, from the definition of O; it is deduced that

G ¼
p2f 2D2r

O2
¼

4pf 2m

LO2
; ð8Þ

where m is the mass of the cylinder. The magnitudes m, L and f are measured directly in the
laboratory and O1 is obtained from the tables which relate O1 to O2/O1 and to L/D. Starting from

dO1 ¼
@O1
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þ

@O1

@ðL=DÞ
L

D

dL

L
�

@O1

@ðL=DÞ
L

D

dD

D
; ð9Þ

the systematic uncertainty of G is
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where DO1 is the increment of O1, i.e., the difference between the values in two consecutive rows in
the tables. Denote

K �
1
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þ
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For the value of K to be small, O1 must be high and the curves of Fig. 3 must be close to each
other. The value of M is smaller for low values of O2/O1 and steep slopes of D(O2/O1)/DO1. The
ratio L/D=1 has the highest O1 among the ratios having single-valued functions together with the
lowest O2/O1. Let us also compare UG for the ratios studied. Table 1 gives K and M for L/D=0.1
and Table 2 gives the K and M values for L/D=1.

In order to simplify the comparison between the systematic uncertainties of the shear modulus
of two cylinders of different slenderness ratios, the following reasonable hypotheses will be
considered:

(1) The relative uncertainty of a balance depends upon its quality and not on the measurable
mass. Therefore Um/m is practically independent of the cylinder size.

(2) A similar conclusion can be drawn for UL/D.

Therefore, the relative systematic uncertainty of the shear modulus depends, apart from the
quality of the balance, the quality of the ruler, and the memory depth of the data acquirer, on the
slenderness ratio and the quotient f2/f1. The dependence on the two latter quantities is expressed
by means of the magnitudes K and M. However, when comparing the appropriateness of two
cylinders in order to calculate G with minimum relative uncertainty, it is enough to compare the
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sum of the second and third terms in (10), KUL/D+2M/N. The cylinder with the minimum of this
sum is the most suitable cylinder for the measurement of G.

Thus, from Table 1, which refers to L/D=0.1, it is deduced that the maximum value of K is 30.1
and the maximum value of M is 38.6. From Table 2 for L/D=1, the respective values K=12.2 and
M=3.1 are deduced for these uncertainties. These results indicate that the most suitable value for
the slenderness ratio is the L/D=1, at least for these 2 cylinders. A L/D=1 cylinder is also
recommended for the calculation of the Poisson ratio.

For L/D=1.0, 1.1, 1.2, and 1.3, Fig. 2(b) and Fig. 3(b) show decreasing slopes and increasing
values of the quotient of the frequencies. Hence L/D=1.0 seems to be the best slenderness ratio to
calculate the elastic constants by means of the quotient of the first two natural frequencies.

Fig. 2 shows some maxima in the lines of constant L/D. In these maxima@n=@ðO2=O1Þ ¼ N;
hence Un=N. Therefore the calculation of n by f2/f1 is not possible. It seems reasonable that,
close to the maxima, the calculation of the Poisson ratio by f2/f1 gives inaccurate values.

Analogue considerations on the O2/O1-O1 plane indicate that the points close to the maxima are
not suitable to calculate the shear modulus from the two lowest natural axisymmetric frequencies.

For increasing values of L/D above 3, DO1/D(O2/O1) tends to infinity, therefore from Eq. (10)
the systematic uncertainty is unbounded and the shear modulus, as expected, is not computable.

6. Experimental tests

The procedure for generating and detecting the vibration of the sample is described in a
previous paper [12]. A cylinder is placed horizontally, supported in the centre over a small rubber
block, so that it can vibrate almost freely. A small steel sphere measuring 3mm in diameter is used
to excite vibration of the sample by applying a brief axial impact to the centre of the cylinder base.
The duration of the impact is estimated to be 10�5 s. This type of excitation allows the sample to
oscillate freely in its natural modes, since following the impact no additional appreciable forces
act upon the sample.

An OP-35 I/O laser interferometer from Ultra Optec Inc., is used to measure the vibration of
the sample. With this system, out-of-plane and in-plane displacement components can be detected
at the same point, although detection is not simultaneous. Detection is point-like and without
contact with the sample. At the same time, the system has a broad bandwidth, from 1 kHz to
35MHz, allowing simultaneous detection of various vibration modes, with a resolution of
approximately 1 nm. A demodulating unit yields a signal proportional to the instantaneous
displacement at the detection point. In the present case, the interferometer is operating in the out-
of-plane mode. The out-of-plane component is detected at the centre of the rod base opposite to
the base where the impact is applied. A TEKTRONIK TDS-430A oscilloscope digitises the
resulting signal. The sampling frequency used is fs=250kSa/s and the number of samples 10 000.
Finally, the FFT of the signal is obtained and the maximum amplitudes in the spectrum
correspond to the natural frequencies.

Two DIN 1.4031 stainless steel samples are used to determine the elastic constants and to carry
out the experimental tests of different uncertainties based on the slenderness ratio:

(1) The first test cylinder has diameter D=49.20mm, length L=4.92mm, therefore L/DE0.1;
and given mass m=73.6 g, hence its density is r=7869 kg/m3.
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Fig. 5 shows the vibration spectrum of the cylinder obtained following the aforementioned
procedure. The maxima corresponding to the lowest natural frequencies are at f1=fa1=16 700Hz
and f2=fa2=61 375Hz, which are used in the determination of n and G, as described. First, the
quotient O2/O1=f2/f1=3.67515 is calculated which, according to Table 1, and by interpolating
linearly, corresponds to n=0.3039. Hence the value O1=0.83442 is obtained from the column O1

by interpolating again. From this value, and those known for f1, D and r, G=75.3GPa is found.
Furthermore, the systematic uncertainties of n and G are obtained following the previously

described methodology. The systematic uncertainties of the direct measures for the length and
mass are UL=10�5 m, Um=10�4 kg, respectively. The uncertainty obtained for the Poisson
ratio is Un=2B/N+HUL/D=32.8� 10�4+27.0� 10�4=0.0060, and its relative uncertainty
2.0%. For the shear modulus, there is a relative uncertainty UG/G=1.36� 10�3+
5.96� 10�3+7.60� 10�3=1.5%.

(2) The aforementioned methodology and the same experimental devices are used to
characterize a L=D=49.92mm cylinder of the same material. In this sample, the values obtained
for the elastic constants are n=0.2963 and G=76.35GPa and the relative uncertainties are
estimated as 0.36% for n and 0.29% for G. The experimental results, G=77.6GPa and n=0.283,
calculated from the measurement of vp and vs velocities together with the value G=76.7GPa from
the first torsional natural frequency are reported in Ref. [13]. Such results are in close agreement
with those given in this paper.

As a result of the calculation of the sensitivity based on the slenderness ratio, it is concluded
that the uncertainties are small for L/D=1. One factor yielding an improvement of the
uncertainty for case L/D=1 with respect to case L/D=0.1 is the fact that the quotient between the
two lowest natural frequencies is three times smaller for the first case than for the second. This
explains why B and M are also smaller since both are increasing functions of the quotient O2/O1.
Furthermore, the total quotient DO1/D(O2/O1) for L/D=0.1 which is approximately double that
for L/D=1 (compare the corresponding curves in Fig. 3(a)) leads to greater uncertainty.
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Moreover, there are other factors which favour the use of the method with L=D cylinders. For
instance, working with these samples is easier, since they are supported better than narrow discs with
L/D=0.1 and there is less influence from the unavoidable imperfections in the required circular
cylindrical form. However, it should not be concluded that the unitary slenderness ratio is the
optimal one, due to the lack of studies on the sensitivity of the method for higher natural frequencies.

Experimental instruments have been used for which 2/N=2� 10�4 and UL/D=2� 10�4

approximately. These values are commonly found in physics laboratories. Therefore, the
uncertainties may be expressed as Un=2� 10�4(B+H) and UG/G=Um/m+2� 10�4(K+M). The
magnitudes B, H, K and M may be calculated for each value of interest of L/D, as shown in
Tables 1 and 2. Hence B+H and K+M enables one to obtain the optimum L/D, i.e., the L/D with
the lowest systematic uncertainties for the Poisson ratio and shear modulus, respectively.

7. Conclusions

A single-test method for the determination of the elastic constants of short isotropic cylinders
whose slenderness ratios range from 0.1 to 3 is presented. The proposed methodology, based on
the measurement of two axisymmetric natural frequencies, allows one to calculate the Poisson
ratio and the shear modulus as follows:

(a) For cylinders with slenderness ratios 0.1, from 0.14 to 0.2, from 1 to 1.3, and from 1.9 to 3,
only the two lowest natural frequencies are required. The figures and tables included give the
values of n and G, from the quotient of such frequencies together with one of these
frequencies.

(b) For slenderness ratios from 0.3 to 0.9 and from 1.4 to 1.8, the third frequency should be
obtained since the aforementioned quotient is not a single-valued function. The quotient to be
used in these cases, either O3/O1 or O3/O2, is determined and shown graphically (Fig. 4).

The proposed method is shown to be precise by investigating the uncertainties. The expressions
given allow the calculation of the uncertainties of n and G for any cylinder. The values of the
uncertainties for cylinders whose slenderness ratio is of the order of one seem to be the smallest.
Detailed tables showing the terms to be included in the calculations of the uncertainties are given
for L/D=1 and 0.1, where it is also shown that the uncertainties depend on the Poisson ratio, i.e.,
on the material.

Two steel cylinders with slenderness ratio 0.1 and 1 are experimentally tested in order to
compare the results. The difference between the values calculated by the method shown and other
types of measures is negligible and is explained by the uncertainties. Uncertainties smaller than
0.4% are found for L/D=1 for both elastic constants.

Thus, it seems that L/D=1 is the best value for the application of this method.
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